Skip to main content
Log in

Characterization of novel clonal murine endothelial cell lines with an extended life span

  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

A murine endothelial cell line was recently established from microvessels that had invaded a subcutaneous sponge implant (Dong, Q. G.; Bernasconi, S.; Lostaglio, S., et al. Arterioscl. Thromb. Vasc. Biol. 17:1599–1604; 1997). From these sponge-induced endothelial (SIE) cells, we have isolated two subpopulations endowed with different phenotypic properties. Clone SIE-F consists of large, highly spread cells that have a relatively slow growth rate, form contact-inhibited monolayers, do not grow under anchorage-independent conditions, express elevated levels of thrombospondin-1 (TSP-1) and are not tumorigenic in vivo. In contrast, clone SIE-S2 consists of small, spindle-shaped cells that have a high proliferation rate, do not show contact-inhibition, grow under anchorage-independent conditions, express very low levels of TSP-1 and are tumorigenic in vivo. Both clones express the endothelial markers vascular endothelial-cadherin and vascular intercellular adhesion molecule-1, but do not express CD31 and E-selectin. In addition, SIE-S2 cells, but not SIE-F cells, express the α-smooth muscle actin isoform. SIE-S2 cells, but not SIE-F cells, are able to form branching tubes in fibrin gels. The SIE-F and SIE-S2 clones, which have properties of nontransformed and transformed cells, respectively, should provide useful tools to investigate physiological and pathological processes involving vascular endothelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ades, E. W.; Candal, F. J.; Swerlick, R. A.; George, V. G.; Summers, S.; Bosse, D. C.; Lawley, T. J. HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J. Investig. Dermatol. 99:683–690; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Albini, A.; Melchiori, A.; Garofalo, A.; Noonan, D. M.; Basolo, F.; Taraboletti, G.; Chader, G.; Giavazzi, R. Matrigel promotes retinoblastoma cell growth in vitro and in vivo. Int. J. Cancer 52:234–240; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Arciniegas, E.; Sutton, A. B.; Allen, T. D.; Schor, A. M. Transforming growth factor beta 1 promotes the differentiation of endothelial cells into smooth muscle-like cells in vitro. J. Cell Sci. 103:521–529; 1992.

    PubMed  CAS  Google Scholar 

  • Bastaki, M.; Nelli, E. E.; Dell'Era, P. et al. Basic fibroblast growth factor-induced angigiogenic phenotype in mouse endothelium. A study of aortic and microvascular endothelial cell lines. Arterioscl. Thromb. Vasc. Biol. 17:454–464; 1997.

    PubMed  CAS  Google Scholar 

  • Belloni, P. N.; Tressler, R. J. Microvascular endothelial cell heterogeneity: interactions with leukocytes and tumor cells. Cancer Metastasis Rev. 8:353–389; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Breier, G.; Breviario, F.; Caveda, L. et al. Molecular cloning and expression of murine vascular endothelial-cadherin in early stage development of cardiovascular system. Blood 87:630–641; 1996.

    PubMed  CAS  Google Scholar 

  • Candal, F. J.; Rafii, S.; Parker, J. T.; Ades, E. W.; Ferris, B.; Nachman, R. L.; Kellar, K. L. BMEC-1: a human bone marrow microvascular endothelial cell line with primary cell characteristics. Microvasc. Res. 52:221–234; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet, P.; Moons, L.; Collen, D. Mouse models of angiogenesis, arterial stenosis, atherosclerosis and hemostasis. Cardiovasc. Res. 39:8–33; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Cavallaro, U.; Gasparini, G.; Soria, M. R.; Maier, J. A. M. Spindle cells isolated from Kaposi's sarcoma-like lesions of BKV/tat transgenic mice co-express markers of different cell types. AIDS 10:1211–1219; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Cavallaro, U.; Wu, Z.-H.; Di Palo, A.; Montesano, R.; Pepper, M. S.; Maier, J. A. M.; Soria, M. R. FGF-2 stimulates migration of Kaposi's sarcoma-like vascular cells by HGF-dependent relocalization of the urokinase receptor. FASEB J. 12:1027–1034; 1998.

    PubMed  CAS  Google Scholar 

  • Chirivi, R. G.; Garofalo, A.; Padura, I. M.; Mantovani, A.; Giavazzi, R. Interleukin 1 receptor antagonist inhibits the augmentation of metastasis induced by interleukin 1 or lipopolysaccharide in a human melanoma/nude mouse system. Cancer Res. 53:5051–5054; 1993.

    PubMed  CAS  Google Scholar 

  • Christofori, G.; Hanahan, D. Molecular dissection of multi-stage tumorigenesis in transgenic mice. Semin. Cancer Biol. 5:3–12; 1994.

    PubMed  CAS  Google Scholar 

  • Cines, D. B.; Pollak, E. S.; Buck, C. A., et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91:3527–3561; 1998.

    PubMed  CAS  Google Scholar 

  • Cockerill, G. W.; Meyer, G.; Noack, L.; Vadas, M. A.; Gamble, J. R. Characterization of a spontaneously transformed human endothelial cell line. Lab. Invest. 71:497–509; 1994.

    PubMed  CAS  Google Scholar 

  • Couffinhal, T.; Silver, M.; Zheng, L. P.; Kearney, M.; Witzenbichler, B.; Isner, J. M. Mouse model of angiogenesis. Am. J. Pathol. 152:1667–1679; 1998.

    PubMed  CAS  Google Scholar 

  • van Dam, H.; Huguier, S.; Kooistra, K., et al. Autocrine growth and anchorage independence: two complementing Jun-controlled genetic programs of cellular transformation. Genes Dev. 12:1227–1239; 1998.

    PubMed  Google Scholar 

  • Dong, Q. G.; Bernasconi, S.; Lostaglio, S.; et al. A general strategy for isolation of endothelial cells from murine tissues. Characterization of two endothelial cell lines from the murine lung and subcutaneous sponge implants. Arterioscl. Thromb. Vasc. Biol. 17:1599–1604; 1997.

    PubMed  CAS  Google Scholar 

  • Durieu-Trautmann, O.; Foignant-Chaverot, N.; Perdomo, J.; Gounon, P.; Strosberg, A. D.; Couraud, P. O. Immortalization of brain capillary endothelial cells with maintenance of structural characteristics of the blood-brain barrier endothelium. In Vitro Cell. Dev. Biol. 27A:771–778; 1991.

    PubMed  CAS  Google Scholar 

  • Fickling, S. A.; Tooze, J. A.; Whitley, G. St. J. Characterization of human umbilical vein endothelial cell lines produced by transfection with the early region of SV40. Exp. Cell Res. 201:517–521; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Fontijn, R.; Hop, C.; Brinkman, H.-J.; Slater, R.; Westerveld, A.; van Mourik, J. A.; Pannekoek, H. Maintenance of vascular endothelial cell-specific properties after immortalization with an amphotrophic replication-deficient retrovirus containing human papilloma virus 16 E6/E7 DNA. Exp. Cell Res. 216:199–207; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Fridman, R.; Kibbey, M. C.; Royce, L. S., et al. Enhanced tumor growth of both primary and established human and murine tumor cells in athymic mice after coinjection with Matrigel. J. Natl. Cancer Inst. 83:769–774; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Guan, J. L.; Shalloway, D. Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature 358:690–692; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Gumkowski, F.; Kaminska, G.; Kaminski, M.; Morrissey, L. W.; Auerbach, R. Heterogeneity of mouse vascular endothelium. Blood Vessels 24:11–23; 1987.

    PubMed  CAS  Google Scholar 

  • Harder, R.; Uhlig, H.; Kashan, A.; Schütt, B.; Duijvestijn, A.; Butcher, E. C.; Thiele, H.-G.; Hamann, A. Dissection of murine lymphocyte-endothelial cell interaction mechanisms by SV-40 transformed mouse endothelial cell lines: novel mechanisms mediating basal binding, and α4-integrin-dependent cytokine-induced adhesion. Exp. Cell Res. 197:259–267; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Kanda, S.; Landgren, E.; Ljungström, M.; Claesson-Welsh, L. Fibroblast growth factor receptor 1-induced differentiation of endothelial cell line established from tsA58 large T transgenic mice. Cell Growth Diff. 7:383–395; 1996.

    PubMed  CAS  Google Scholar 

  • Lampugnani, M.-G.; Resnati, M.; Raiteri, M.; Pigott, R.; Pisacane, A.; Houen, G.; Ruco, L. P.; Dejana, E. A novel endothelial specific membrane protein is a marker of cell-cell contacts. J. Cell Biol. 118:1511–1522; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Lechardeur, D.; Schwartz, B.; Paulin, D.; Scherman, D. Induction of blood-brain barrier differentiation in a rat brain-derived endothelial cell line. Exp. Cell Res. 220:161–170; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Moldovan, F.; Benanni, H.; Fiet, J.; Cussenot, O.; Dumas, J.; Darbord, C.; Soliman, H. R. Establishment of permanent human endothelial cells achieved by transfction with SV40 large T antigen that retain typical phenotypical and functional characteristics. In Vitro Cell. Dev. Biol. 32A:16–23; 1996.

    Google Scholar 

  • Montesano, R.; Orci, L.; Vassalli, P. In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J. Cell Biol. 97:1648–1652; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Montesano, R.; Pepper, M. S.; Möhle-Steinlein, U.; Risau, W.; Wagner, E. F.; Orci, L. Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing middle T oncogene. Cell 62:435–445; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Montesano, R.; Pepper, M. S.; Vassalli, J. D.; Orci, L. Phorbol ester induces cultured endothelial cells to invade a fibrin matrix in the presence of fibrinolytic inhibitors. J. Cell. Physiol. 132:509–516; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Montesano, R.; Schaller, G.; Orci, L. Induction of epithelial tubular morphogenesis in vitro by fibroblast-derived soluble factors. Cell 67:697–711; 1991.

    Article  Google Scholar 

  • Montesano, R.; Vassalli, J.-D.; Baird, A.; Guillemin, R.; Orci, L. Basic fibroblast growth factor induces angiogenesis in vitro. Proc. Natl. Acad. Sci. USA 83:7297–7301; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima, Y.; Mironov, V.; Yamagishi, T.; Nakamura, H.; Markwald, R. R. Expression of smooth muscle alpha-actin in mesenchymal cells during formation of avian endocardial cushion tissue: a role for transforming growth factor beta3. Dev. Dyn. 209:296–309; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Navarro, P.; Caveda, L.; Breviario, F.; Mândoteanu, I.; Lampugnani, M.-G.; Dejanan, E. Catenin-dependent and-independent functions of vascular endothelial cadherin. J. Biol. Chem. 270:30,965–30,972; 1995.

    CAS  Google Scholar 

  • Newman, P. J. The biology of PECAM-1. J. Clin. Invest. 99:3–8; 1997.

    Article  PubMed  CAS  Google Scholar 

  • O'Connell, K. A.; Edidin, M. A mouse lymphoid endothelial cell line immortalized by simian virus 40 binds lymphocytes and retains functional characteristics of normal endothelial cells. J. Immunol. 144:521–525; 1990.

    PubMed  Google Scholar 

  • Pepper, M. S.; Ferrara, N.; Orci, L.; Montesano, R. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem. Biophys. Res. Commun. 189:824–831; 1992.

    Article  PubMed  CAS  Google Scholar 

  • RayChaudhury, A.; Frazier, W. A.; D'Amore, P. A. Comparison of normal and tumorigenic endothelial cells: differences in thrombospondin production and responses to transforming growth factor-beta. J. Cell Sci. 107: 39–46; 1994.

    PubMed  CAS  Google Scholar 

  • Roux, F.; Durieu-Trautmann, O.; Chaverot, N., et al. Regulation of gammaglutamyl transpeptidase and alkaline phosphatase activities in immortalized rat brain microvessel endothelial cells. J. Cell. Physiol. 159:101–113; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer, K. M.; Vicart, P.; Delouis, C.; Paulin, D.; Dräger, A. M.; Langenhujsen, M. M. A. C.; Weksler, B. B. Characterization of a newly established human bone marrow endothelial cell line: distinct adhesive properties for hematopoietic progenitors compared with human umbilical vein endothelial cells. Lab. Invest. 76:25–36; 1997.

    PubMed  CAS  Google Scholar 

  • Sheibani, N.; Frazier, W. A. Thrombospondin 1 expression in transformed endothelial cells restores an normal phenotype and suppresses their tumorigenesis. Proc. Natl. Acad. Sci. USA 92:6788–6792; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Vicart, P.; Testut, P.; Schwartz, B.; Llorens-Cortes, C.; Perdomo, J. J.; Paulin D. Cell adhesion markers are expressed by a stable human endothelial cell line transformed by the SV40 large T antigen under vimentin promoter control. J. Cell. Physiol. 157:41–51; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R. L.; Courtneidge, S. A.; Wagner, E. F. Embryonic lethalities and endothelial tumors in chimeric mice expressing polyoma virus middle T oncogene. Cell 52:121–131; 1988.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Montesano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavallaro, U., Castelli, V., Perilli, A. et al. Characterization of novel clonal murine endothelial cell lines with an extended life span. In Vitro Cell.Dev.Biol.-Animal 36, 299–308 (2000). https://doi.org/10.1290/1071-2690(2000)036<0299:CONCME>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2000)036<0299:CONCME>2.0.CO;2

Key words

Navigation